


;s &=

S PN N N PN TN e

.
| [
I
I
[
i
i
i
t
{

9 AAR-145

ik 1
Q=SON()\ - fx + ‘bx)\ - Sxp)dt +SON(fu- ¢u)\ + Sup)dt

1
+N[S (fTI - ¢">\ + sﬂp)dt+ (h" +w"o)o+ (g"+ w"u)l]
0

+N(-C+hz+w20)o+N(>\+gx+¢vxu)l. (16)

For the exact optimal solution, one must have
P = 0, Q=0. (17)

For an approximation to the optimal solution, the following

relations are to be satisfied:

P<e¢

S€y Q< E (18)

where €, and €, are small, preselected numbers.




3. Description of the Algorithm

The technique employed is characterized by a sequence of
two-phase cycles, composed of a conjugate gradient phase and
a restoration phase. These phases are described below.

The conjugate gradient phase is started only when the
constraint error P satisfies Ineq. (18-1). It involves a
single iteration, which is designed to decrease the value of
the functional I or the augmented functional J, while the
constraints are satisfied to first order. During this itera-
tion, the first variation of the functional I is minimized,
subject to the linearized constraints. The minimization is
performed over the class of variations of the control u(t) and
the parameters m and z(0) which are equidistant from some con-
stant multiple of the corresponding variations of the previous
conjugate gradient phase.7

The restoration phase is started only when the constraint
error P violates Ineq. (18-1). The restoration phase involves
one or more iterations. In each restorative iteration, the
objective is to reduce the constraint error P, while the

constraints are satisfied to first order and the norm squared

7The sequence of conjugate gradient phases generated by the
algorithm is such that, for the special case of a quadratic
functional subject to linear constraints, various orthogonal-
ity and conjugacy conditions hold (see Section 6).
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\
i of the variations of the control u(t) and the parameters =

and z(0) is minimized. The restoration phase is terminated
whenever Ineq. (18-1) is satisfied.
' A complete conjugate gradient-restoration cycle is de-

signed so that the value of the functional I decreases,while

l. the constraints are satisfied to the accuracy (18-1) both at
- the beginning and at the end of the cycle. Finally, the al-
i' gorithm as a whole is terminated whenever Inegs. (18) are

satisfied simultaneously.

o,
-

3.1. Remark. During each conjugate gradient iteration

B ot
N '

or restorative iteration, use of nonlinear equations must be

avoided. Therefore, the exact feasibility equations (2)-(6)

o
* ‘

are replaced by their corresponding linearized approximations.

_.-,
|

These linearized approximations do not include forcing terms

in the conjugate gradient phase, while they do include forcing

terms in the restoration phase.

o |

3.2. Notation. For any iteration of the conjugate
gradient phase or the restoration phase, the following termi-
nology is adopted: x(t), u(t), m denote the nominal functions;
x(t), u(t), ™ denote the varied functions; and Ax(t), Au(t),

Am denote the displacements leading from the nominal functions

to the varied functions. These quantities satisfy the relations

X(t) =x(t) + Ax(t), u(t) =u(t) + Au(t), T=w+An, (19)

i st

. N e WM P PN

[ |
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Because the vector x is partitioned into y and z, Eq. (19-1) 8

implies that

y(t) =y(t) +Ay(t), z(t) =z(t) +Az(t). (20) g

Let a be a positive number representing the stepsize
(either the conjugate gradient stepsize or the restoration
stepsize). Then, we define the displacements per unit step-

size as follows:
A(t) = Ax(t) /a, B(t) = Au(t) /a, C=An/a. (21)

The vector A is partitioned into vectors D and E associated .
with y and z, respectively. Therefore, Eq. (21-1) implies

that
D(t) = Ay (t) /a, E(t) = Az (t) /a. (22)
Upon combining (19)-(20) with (21)-(22), we see that

x(t) = x(t) + aA(t), da(t) =u(t) + aB(t), T=mnm+aC, (23)

[ SI——

y(t) =y(t) +aD(t), Z(t) =z(t) +aE(t) . (24)

3.3. Desired Properties. The functions Ax(t), Au(t), {
Am must be determined so as to produce some desirable effect
at every iteration, namely, the decrease of the functionals

I, and/or J, and/or P. Thus, the following descent properties

are required:




e ] e
. . . s

i
|
t
i
i
I
i
{

I< T, and/or 3-:J, and/or P < P, (25)

where I, J, P are associated with the nominal functions and

-~

I

t

w

~

r U p are associated with the varied functions. In turn,

he functions A(t), B(t), C are chosen so that
§I1<0, and/or §J<0, and/or SpP<O, (26)

here the symbol §(...) denotes the first variation. Then,

by choosing the stepsize a sufficiently small, the satisfac-

t

a

w

P

ion of relations (25) is guaranteed. Ineqgs. (25-1), (25-2)
nd (26-1), (26-2) characterize the conjugate gradient phase,
hile Ineqgs. (25-3) and (26-3) characterize the restoration
hase.

3J.4. First Variations. Next, we give the expressions

for the first variations of the functionals I, J, P; after

S

t

imple manipulations, omitted for the sake of brevity, they

ake the forms'9

1
$1/a = S (f;I;I\+ f$B+ f'fcmu (h':n+ h;fC)o + (q;l;A+ q:'C)l , (27
0

8Implicit in Egs. (27)-(29) is the assumption D(0) = 0.

9

The first variation of the augmented functional J is computed
by varying the functions x(t), u(t), w,while holding the
multipliers )\ (t), p(t), o, u unchanged.




and

5J/a = ‘l(—i+f - ¢\ +S_p) TAdt + l(f - ¢ A +S p)TBdt f
oA 0 x "~ Px’ x' o u u u” -

i | T
+ [‘0 (f“ - on,\ +Snp)dt+ (hn +mn0)o+ (gn +1,’rnu)1] C

T n
+ [(—.‘,+hz+u\zu) E]0+ [()\+<;;x+u»xu)‘1\.]1 ; (28)
and
i | . T 1 t
] Sp/2a= ‘ (x—@)T(A-\b:A-@uB-u*fC)dt+‘ ST(S$A+S$B+S:‘C)dt ‘
0 0
P SR T
+[m (mzﬁ+mnC)]o + [J (l.xA+u”C)]1 . (29)

3.5. Remark. For the purpose of this report, Egs.

(27)-(29) must be completed by one of the following relations:

1
K/a = ‘0 BTBdt + CTC + (ETE)O, (30)

or

(31) L

1
K/0® = [0 (B-yé)'rm-yé)du(c—yc‘:)T(c-yé)+[(E—yr‘:)T(E-vr§)]

’
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o

which constitute a measure of the overall change of the con-
trol u(t) and the parameters mn and z(0). Equation (30) is
employed in the restoration phase, and Eq. (31) is employed
in the conjugate gradient phase. In Eq. (31), the functions
A(t), B(t), C pertain to the present conjugate gradient phase,
i and the functions A(t), é(t), C pertain to the previous con-
jugate gradient phase. The symbol Yy denotes a scalar, non-

d negative quantity, called the directional coefficient. 1Its

specification is discussed in Section 6 .
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4. Restoration Phase

4.1. Linearized Equations. Let x(t), u(t), n denote

nominal functions satisfying (4), but not necessarily (2)~-(3)
and (5)-(6). To first order, the perturbations per unit
stepsize A(t), B(t), C must satisfy the linearized constraint

equations
Ao Rt B0 C+ (2~d]=0 0<t<l (32)
X u m ! s

T

S;A+S B+SC+S=0, 0<ts<1, (33)
D(0) =0, (34)
(w'er+w;fC+w)o =0, (35)
WA+ pTc+ ) =0, (36)

4.2. Descent Property. The linearized equations

(32)-(36) admit an infinite number of solutions, each of
which is characterized by a descent property in the constraint
error P. This descent property can be seen by combining (29)

with (32)-(36): the first variation of P becomes

§P = -2aP. (37)

IS g et e AT A Y TN YRS




t
b
!

em

P e Py e

| g

17 AAR-145

Since P> 0, Eq. (37) shows that 8P < 0; hence, for a suffi-
ciently small, a decrease in the constraint error P is quar-
anteed.

4.3. Special Variations. Among the infinite number of

solutions of Egs. (32)-(36), the one that minimizes the
functional {30) is selected. Thus, we seek the minimum of
the quadratic functional (30), with respect to the functions
A(t), B(t), C which satisfy the linearized constraints
(32)-(36).

By applying standard techniques of optimal control theory

or calculus of variations, the following optimality conditions

are obtained:

B=¢UA-Sup, 0O<tc<1, (38)
1

C= ‘o(‘r‘“A = S,n.p)dt- (w_no)o- (wTTU)l' (39)

E(0) = (£ -w,0) 4 (40)

A+ oA =S p

L}
o
-
o
A
(23
A
—
-

(41)

(>\+wxu)1=0. (42) \

Summarizing, we seek functions A(t), B(t), C and multipliers
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A(t), p(t), o, 1 which satisfy the linearized constraints

(32)-(36) and the optimality conditions (38)-(42).

4.4. Linear, Two-Point Boundary-Value Problem. The -4

technique used to solve the LTP-BVP (32)-(36) and (38)-(42)
is a forward integration scheme in combination with the method
of particular solutions (Refs. 6-8). The technique requires
the execution of n+p+ 1 independent sweeps of the differen-
tial system (32)-(36) and (38)-(42), each characterized by a
different value of the (n+ p)-vector w, whose components are
the n components of the initial multiplier ) (0) and the p
components of the parameter C.

The generic sweep is started by assigning particular
values to the components of w, that is, the components of the
vectors A (0) and C. With A(0) known, ;(0) is known. There-
fore, Egs. (35) and (40) constitute a system of b+ c linear
relations in which the unknowns are the b+ c components of
the vectors E(0) and o. For this system to have a unique

solution, the following disegquation must hold:10

T
det[u&wz]o#O. (43)

10Disequation (43) is obtained from (35) and (40) after elimin-
ation of E(0). The resulting linear equation in ¢ admits a ‘
unique solution providing (43) is satisfied. ]
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With E(0) known and because of (34), the vector A(0) is known.
Then, A(t) and A (t) together with B(t) and p(t) are obtained
by forward integration of (32) and (41l), subject to (33) and
(38). Note that, at each time station t, 0<t<1l, Egs. (33)
and (38) constitute a system of m+ k linear relations in which
the unknowns are the m+ k components of the vectors B(t) and
p(t). For this system to have a unique solution, the follow-

ing disequation must hold:ll

T
det[SuSu]#O, 0<t<1. (44)

As a result of the procedure, the sweep is completed: for the
arbitrary value assigned to w, it leads to the satisfaction of
all of the equations of the system (32)-(36) and (38)-(42),
except Egs. (36), (39), (42).

In order to satisfy Egs. (36), (39), (42) and because
the system (32)-(36) and (38)-(42) is nonhomogeneous, n+p+1
independent sweeps must be executed employing n+p+ 1 differ-
ent vectors w,, i=1l,...,n+p+1l. The first n+p sweeps are

performed by choosing the vectors Wyreeoooes to be the

’wn+p

columns of the identity matrix of order n+ p. The last sweep

1l sequation (44) is obtained from (33) and (38) after elim-
ination of B(t). The resulting linear equation in p(t)
admits a unique solution providing (44) is satisfied.
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is executed by cl.oosing w to be the null vector. As

n+p+1
a result, one generates the functions and multipliers

Ai(tL Bi(tL Ci,ki(tL pi(th oi,.i= 1 e ndpat 1. (45)

Now, we introduce the n+p+ 1l undetermined, scalar con-

stants ki and form the linear combinations

A(t)

EkiAi(t), B(t) inBi(t), C==EkiCi, (46)

A(t)

Zkiki(t), p(t) Zkipi(t), o=2tk,o, , (47)

where the summations are taken over the index i. The n+p+1
coefficients ki and the q components of the multiplier u are
obtained by forcing the linear combinations (46)-(47) to sat-
isfy Egqs. (36), (39), (42), together with the normalization

condition (Ref. 6)

Ik

Il
[
.

(48)

Once the constants ki are known, the solution of the LTP-BVP
(32)-(36) and (38)-(42) is given by (46)-(47).

4.5. Restoration Stepsize. With the functions A(t),

B(t), C known, the one-parameter family of varied functions
(23) can be formed. For this one-parameter family, the con-

straint error (15) becomes a function of the form




v a

; 21 AAR-145
P=P(a) . (49)
: Then, the stepsize o must be selected so that the following J
i relations are satisfied:
¥
i& P(a) < P(0), ila) > 0. (50) ‘
7 Satisfaction of Ineq. (50-1) is possible because of the des-
| i-

cent property of the restoration phase. 1Ineq. (50-2) is
{ required for problems with free final time.

In order to achieve satisfaction of (50), a bisection
i process is applied to the restoration stepsize «, starting
¢ from the reference stepsize a0==1. This reference stepsize
has the property of yielding one-step restoration for the case
where the constraints (2)-(6) are linear.

4.6. Iterative Procedure for the Restoration Phase.

=)

The descent property (37) of the restoration phase guarantees

P
L

satisfaction of Ineq. (50-1) at the end of any iteration, but
not satisfaction of Ineq. (18-1). Therefore, the restoration

algorithm must be employed iteratively until Ineq. (18-1) is

= e

satisfied. At this point, the restoration phase is termina-

ted.

N N M

=
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5. Conjugate Gradient Phase: General Case

5.1. Linearized Equations. Suppose that nominal func-

tions x(t), u(t), m are available, which satisfy (2)-(6). To
first order, the perturbations per unit stepsize A(t), B(t),

C must satisfy the linearized constraint equations

s L) T T K
A-oTa-¢lB-goC=0, 0<t<l, (51)
sTa+sTB+sTc=0 0<t<l (52)
X u T l = e il
D(0) =0, (53)
T T
(u\zE + u)"C)O— 0, (54)
;AR P
wia+ e, = o. (55)

5.2. Special Variations. Among the infinite number of

solutions of Egs. (51)-(55), the one that minimizes the func-
tional (27) is selected. Thus, we seek the minimum of the
linear functional (27), with respect to the functions A(t),
B(t), C which satisfy the linearized constraints (51)-(55)
and the quadratic isoperimetric constraint (31).

By applying standard techniques of optimal control theory

or calculus of variations, the following optimality conditions
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are obtained:12

B=Y§—(fu-¢u)\+sup), 0<t<1, (56)

A 1
C=vyC-~- U (f,’T - ¢nA +Sﬂp)dt+ (hTr +“n°)0 + (g1r '“Pn“)l] ¢+ (57)
0

E(0) =YE(0)-(-zC+ hz+ mzo)o, (58)
A-f +¢ A-Sp=0, 0<t<1, (59)
(A+gx+wxu)l=0. (60)

Summarizing, for a given value of the directional coefficient
Y, we seek functions A(t), B(t), C and multipliers A(t), p(t),
0, u which satisfy the linearized constraints (51)-(55) and
the optimality conditions (56)-(60).

5.3. Isoperimetric Constraint. In the light of (56)-(60),

the error in the optimality conditions (16) reduces to

l A ~ A A
Q= ‘O(B-Yﬁ)T(B-YB)dt+ (C-YC)T(C-YC) + [(E-YE)T(E-YE)]O . (61)

121n Egs. (56)-(60), the multiplier v associated with the

isoperimetric constraint (31) is set at the level 2v=1.
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Consequently, the following relation ties the isoperimetric
constant, the stepsize, and the error in the optimality con-

ditions:

K=a%Q. (62)

Clearly, to assign values to the isoperimetric constant
is the same as assigning values to the stepsize. However,
there is no clear-cut way of determining a priori convenient
values for the isoperimetric constant. Therefore, the imple-
mentation of the conjugate gradient algorithm becomes simpler
if one avoids evaluating‘'a in terms of K through (62) and
assigns values to a directly.

5.4. Descent Property. When the variations defined by

(51)-(60) are employed, the first variation of the augmented

functional (28) becomes
§o=-a(Q+Yy2), (63)

where Q is given by (61) and
l A T\ A T\ \T«
z=‘ (B-yB) Bdt+ (C-yC) C+[(E-YE)E], - (64)
0

For the first iteration of the conjugate gradient phase,

one sets

y=0, (65)

i

- IS T R
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with the implication that

§J = =aQ . (66)

Since Q >0, Eq. (66) shows that SJ< 0. Hence, for a suffi-
ciently small, it is guaranteed that the augmented functional
J decreases.

For subsequent iterations, one sets y #0. More specifi-

cally, the directional coefficient must be such that

\ \Or ((‘7)

and its proper value is discussed in Section 6. At any rate,

Eq. (63) shows that 8J < 0 providing

Q+Y2>0. (68)

Hence, for a sufficiently small, it is guaranteed that the
augmented functional J decreases as long as Ineq. (68) is
satisfied. If Ineq. (68) is violated, the descent property
on J no longer holds, and the conjugate gradient phase must
be restarted by resetting the directional coefficient y at the
level (65).

5.5. Linear, Two-Point Boundary-Value Problem. For a

given value of the directional coefficient y, the technique
used to solve the LTP-BVP (51)=(60), associated with the con-

jugate gradient phase, is analogous to that described for the

v € AT A B 8
B

e AT e ding
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restoration phase (see Section 4.4); hence, it is not re-
peated, for the sake of brevity.

5.6. General Solution. Next, assume that two particu-

lar values are given to the directional coefficient y, for

instance,
Ye=0 and Yan=1. (69)
Denote by
Rolt), B o(R): Cuv AplB)s Dt O o1y (70)
and
Ay (£) By (£) Cunrdpa (£), 0pp (), OppiMpn (71)

the particular solutions of the LTP-BVP (51)-(60) correspond-
ing to (69-1) and (69-2), respectively. Simple manipulations,
omitted for the sake of brevity, show that the general solu-
tion of (51)-(60), valid for any value of the directional

coefficient y, can be written as

i

A(t) =A,(t) +Y[A,,(t) =A ()], (72-1)

]

B(t) B*(t) +Y[B**(t) -B*(t)]l (72-2)

(72-3)

C=C,+Y(Cpy~Cy)o

B i e e——
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and

M) =, (6) + YA, () = A, ()], (73-1)
p(t) =pae(t) +¥Ylpael(t) —p,(t)], (73-2)
0=0,+Y(0ue=0,), (73-3)
W=l H Y (g = uy,) . (73-4)

As a conclusion, the general solution of (51)-(60) requires
that two sets of n+p+ 1 sweeps be executed, one leading to
the particular solution (70) and one leading to the particu-
lar solution (71).

5.7. Stepsize and Directional Coefficient. With the

functions A(t), B(t), C known, the following two-parameter

family of varied functions can be formed:

%(t) = x(t) + a{A*(t) +Y[A,,(t) - A*(t)]} ; (74-1)
B(E) =u(t) +ofB, (£) +¥[By, (£) =B, (8D}, (74-2)
RoxralC, ¥+ Y(Chu=Csll « (74-3)

On the other hand, the multipliers A(t),p(t), o,u form the
one-parameter family (73). Upon using (73) and (74), we see

that the augmented functional (8) takes the form

A
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J=J(a,y) . (75)

Therefore, the optimum values of a and y satisfy the relations

~

J, (a,Y) =0, :Ty(a,y)=0. (76)

Since the simultaneous determination of a and y might be
be expensive computationally, we proceed in a different way.
First, we determine an approximate value of the directional
coefficient y, based on the consideration of the linear-
quadratic model (Section 6). Once Yy is known, the two-

parameter family (75) reduces to the one-parameter family

Then, the optimum stepsize a satisfies the relation

J (a) =0, (78)
Q

whose numerical solution can be obtained using quadratic in-

terpolation or cubic interpolation (Ref. 9).

¢
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6. Conjugate Gradient Phase: Linear-Quadratic Case

In the previous section, we analyzed the conjugate
gradient phase in general, regardless of the analytical form
of the functional (1) and the constraints (2)-(6). In this
section, we consider the linear-quadratic case, that is, the
case where the functional (1) is gquadratic and the constraints
(2)-(6) are linear.

6.1. General Solution. Under the assumption of linear

constraints, it can be verified that the particular solutions

(70) and (71) satisfy the relations

A,, (t)-A, (£)=A(t), ;3**(t)—B*(t)=l§(t), Crp=Ce=8, (79}
Aea(B)=2,(R)=0, puu(t)=p, (t)=0, 0,,~0,=0, U,.~u,=0. (80)
As a consequence, Egs. (72)-(73) reduce to

A(t) =A,(t) +YA(L), B(t)=B,(t) +YB(t), C=C,+yC, (81)

Alt)=2,(t), p(t)=p,(t), 0=04 =y o (82)

This means that the general solution of the LTP-BVP (51)-(60)
can be obtained by executing only one set of n+p+ 1 sweeps,
namely, the set of sweeps leading to the solution (70). By

the way, this is the solution corresponding to (69-1), namely,

the solution associated with the ordinary gradient phase of Ref. 5.
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6.2. Local Orthogonality Conditions. Under the assump-

tion of linear constraints, the two-parameter family (74)

simplifies to

%(t) =x(t) +alA, (£) + YA(E)], (83-1)
@(t) =u(t) +alB,(t) +yB(t) ], (83-2)
F=m+a(c, +vC). (83~3)

On the other hand, the multipliers A(t), p(t), o, u are given
by Egs. (82). Upon using (82) and (83), we see that the

augmented functional (8) still takes the form (75). Hence,

the optimum values of o and y still satisfy the relations (76).
After laborious manipulations, omitted for the sake of

brevity, Egs. (76) lead to the following local orthogonality

conditions:

1

So 8TBat + i + (E',I,'E)o= 0, (84-1)

1 .
‘0 BTBat + C1¢ + (E'fﬁ:)o= 0, (84-2)

with the implication that

1 -~ -~ ~
\ ByB,dt + C4Cu+ (E4E,) o = 0. (84-3)
0

. 3 g st
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Here, the adjective local is employed to mean that Egs. (84)

involve vectors B(t), C, E(0) which are solutionsof (51)-(60)
computed for the present iteration and the previous iteration;
they also involve vectors B, (t), C,, E,(0) which are solutions
of (51)-(60) for y =0 computed for the present iteration and
the next iteration.

6.3. Local Conjugacy Condition., Let w(t) and M(t)

denote the vectors

x(t) A(t)
w(t) =] u(t) - M(t) = | B(t) 5 (85)
m C
Let fww' Iww’ hww denote the Hessian matrices of the functions

f,g,h with respect to the vector w. With this notation, and
under the assumption of linear constraints and quadratic
functional, Egs. (76) lead to the following local conjugacy
condition:

x T * T X T #

So M fwdet+ (M hwwM)0 + (M gwwM)l =0. (86)
Here, the adjective local is employed to mean that Eq. (86)
involves vectors M(t), that is, vectors A(t), B(t), C,which
are solutions of (51)-(60) computed for the present iteration

and the previous iteration.

-
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6.4. Stepsize and Directional Coefficient.

observing that

M(t) =M, (t) +YM(t),

and after accounting for Egs. (84) and (86),

that the optimal values of y and o are given by

AAR-145

After

(87)

it can be shown

Y=0/Q , a=0Q/R, (88)
where
Lo T T
Q= SOB*B;dt+c*c*+(E*E*)0 ) (89-1)
A Lo, AT A AT
Q= ‘ B,B,dt + C,C, + (E,E,) (89-2)
0
R= lMTf Mdt + (MTh M) +(MTq M) (89-3)
0 ww ww ‘0 Fww 11"

Clearly, the optimal directional coefficient y is the

ratio of the error in the optimality conditions Q for the

present conjugate gradient iteration to the error in the

optimality conditions Q for the previous conjugate gradient

iteration. These quantities are known, since they involve

vectors B, (t), C,, E,(0) which are solutions of (51)-(60) for

Yy = 0 computed for the present iteration and the previous

iteration
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With y known, the vector M(t) is computed with (87) and
the scalar quantity R is computed with (89-3). Then, the
optimal stepsize a is evaluated with (88-2). Clearly, the
optimal stepsize o is the ratio of the error in the optimal-
ity conditions Q to the scalar quantity R, which constitutes
a measure of the curvature of the functional (1). Both Q
and R are computed employing quantities pertaining to the
present conjugate gradient iteration.

6.5. Descent Property. Under the assumption of linear

constraints, Eq. (64) simplifies to

1 A N ~
z = S ByBat + CiC+ (ER) . (90)

0

Because of the local orthogonality condition (84-1) written

for the previous iteration, Egq. (90) yields

z=0. (91)
As a consequence, Eq. (63) reduces to

8§J = -aQ, (92)

where the error in the optimality conditionsQ is given by Eq.
(89-1). Equation (92) holds for any conjugate gradient iter-

ation and shows that, since Q >0, we have 83 < 0. Hence, for

o sufficiently small, it is guaranteed that the augmented

prenes

SR




34 AAR-145

functional J decreases. 1In conclusion, for the linear-
quadratic case, the restart procedure mentioned in Section
5.4 never occurs. This means that the directional coeffi-
cient Yy is set at the level (65) only for the first conjugate
gradient iteration.

6.6. General Orthogonality and Conjugacy Conditions.

Now, assume that the algorithm described by Eqs. (51)-(60)
and (83) is employed, starting with some feasible nominal
functions. Further, assume that the directional coefficient
Yy is set at the level (65) for the first conjugate gradient
iteration and at the level (86-1) for any subsequent conjugate
gradient iteration. Under thes2 assumptions and for the
linear~-quadratic case, one can generalize the local orthogo-
nality conditions (84) and the local conjugacy condition

(86) as follows:

1
T ‘rj“ .‘.]‘ o = -

SO B*det-*L*(p*‘(L*Lp)o- 0, (93-1)
: BB _dt+CC _+ (EVE._).=0 (93-2)
0o * xp A AD W oap QT

and

N B s (MTh._ M ) +(MTq M ), =0 (93-3)
0 WwW P ww p’0 Iww p’1 "V

ik bl S iy L _..‘-u._-n&m
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where the subscript p denotes any conjugate gradient itera-
tion preceding the present conjugate gradient iteration.

While these equations do not guarantee convergence in a finite
number of steps, they do guarantee that the algorithm gener-
ates a sequence of linearly independent vectors M(t), that

is, a sequence of linearly independent variations per unit

stepsize A(t), B(t), C.
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2. Conjugate Gradient Phase: Practical Implementation il

In this section, we summarize the results of Sections

——t

5-6 and suggest practical ways of utilizing these results,
within the following operating rules: (i) the use of second
derivatives must be avoided; and (ii) the simultaneous de-
termination of the directional coefficient y and the stepsize
a must be avoided. We refer to the general case where the
functional (1) is nonquadratic and/or the constraints (2)-(6)
are nonlinear. |

7.1. Auxiliary Functions. The first step is to solve

Egs. (51)-(60) for a fictitious value of the directional !

coefficient, namely,
Ye=0. (94)

Using the solution technique of Section 4.4, we obtain the

following auxiliary functions and multipliers:

A*(t)r B*(t)/ C*,A*(t), D*(t), Oxr Hy o (95)

7.2. Directional Coefficient. The second step is to _l

compute the actual value of the directional coefficient vy .

For the first conjugate gradient phase, we set -!
Yy=0. (96)

For subsequent conjugate gradient phases, we set




B R iy g s

L

l
[
l
i
|
l
I
|
l
l
i
i
i
i
I
i
E
[

37 AAR-145
y=0/0Q, (97)
where
1 ¢ T T
Q=‘ BeB db+ £30, # (BB}, (98-1)
0
A 1 /\TA /\T/\ ATA
a =s ByBydt + CoC, + (ByE,) , . (98-2)
0

In Egs. (97)-(98), the symbols Q and é denote the errors in

the optimality conditions for the present conjugate gradient

phase and the previous conjugate gradient phase, respectively.

The directional coefficient (97) is acceptable only if
J (0)=-(Q+Y2) <0, (99)

where Q is given by (98-1) and Z is given by

l a) AN A

2 =s ByBAt + CoC + (EyE) . (100)
0

If Ineq. (99) is violated, then the directional coefficient

(97) must be discarded and replaced by the value (96). This

means that the algorithm must be restarted by replacing the

conjugate gradient phase with an ordinary gradient phase.

7.3. Basic Functions. The third step is to compute the

basic functions A(t), B(t), C and the multipliers A (t), p(t),

0, u. This is done with the following formulas:
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A(t) =A,(t) + YA(t),  B(t) =B, (t)+yB(t), c=cC, +vC, (101)
X(t) =A*(t)' p(t) =p*(t)’ 0=0* P U=|J*¢ (102)

Therefore, in the practical implementation of the algorithm,
the basic functions A(t), B(t), C are computed using the formu-
las derived under the assumption of linear constraints.

7.4. Stepsize. With the basic functions (101) known,

we consider the one-parameter family of varied functions
x(t) =x(t) + aA(t), u(t)=u(t)+aB(t), T=mn+aC. (103)

After substitution of Eqs. (102)-(103) into (8) and (15), the

following functions of the stepsize are obtained:
J= J(a), P=P(a). (104)

Then, a one dimensional search scheme is applied to
(104-1), and a value of the stepsize a is selected for which

the following relations are satisfied:
J(a) <J(0), P(a) <P, , T(a) >0, (105)

where 1 is the final time and P, is a preselected number,
not necessarily small. Satisfaction of Ineq. (105-1) is pos-
sible because of the descent property of the conjugate
gradient phase. Ineq. (105-2) is introduced to prevent

excessive constraint violation. And Ineq. (105-3) is required
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| |

[ e |

for problems with free final time.
Prior to the satisfaction of (105), a scanning process
is employed, leading to the bracketing of the minimum point
for J(a). This operation is then followed by a Hermitian
cubic interpolation process (Ref. 9), which is stopped whenever |

the following relation is satisfied:!3 |

I ()] < eq or |Ja(a)/J“(0)| S €q0 (106)

e oEm Bm Em B

subject to an upper limit for the number of search steps Ns'

Once a stepsize g has been selected consistently with either

[
. 1

(106) or the prescribed upper limit for the number of search

steps, Ineqgs. (105) must be checked. If satisfaction occurs,

=1

then the stepsize A is accepted. If any violation occurs,

then the stepsize a must be bisected progressively until

=

satisfaction of (105) is finally achieved.

3

13The symbols €3 and ‘4 denote small, preselected numbers.

=N WM W e e
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8. Descent Property of a Cycle

A descent property exists for a complete conjugate J
gradient-restoration cycle under the assumption of small ] y
stepsizes. Let “g denote the conjugate gradient stepsize and ;
a. the restoration stepsize. Simple manipulations, omitted #

for the sake of brevity, show that the conjugate gradient i
corrections are of O(Qg), while the restoration corrections
are of 0(“r“§)’ Hence, for ag sufficiently small, the restor-
ation corrections ar« negligible with respect to the conjugate
gradient corrections. Therefore, the restoration phase pre-
serves the descent property of the conjugate gradient phase.
More specifically, let I, 12, I3 denote the values of
the functional (1) at the beginning of the conjugate gradient
phase, at the end of the conjugate gradient phase, and at the
end of the subsequent restoration phase. Note that I

1

are not comparable, since the constraints are not satisfied

and I,

to the same accuracy. On the other hand, Il and I3 are com-

parable, and the conjugate gradient stepsize ﬂq can be selected

so that

13< I, . (107)

This inequality constitutes the descent property of a complete
conjugate gradient-restoration cycle. In order to enforce it,

one proceeds as follows. At the end of the restoration phase, l
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one must verify Ineq. (107). 1If it is satisfied, the next
conjugate gradient phase is started; otherwise, the previous
conjugate gradient stepsize is bisected as many times as

needed until, after restoration, Ineq. (107) is satisfied.
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9. Summary of the Algorithm

The sequential conjugate gradient-restoration algorithm

solves optimal control problems involving a functional, sub-

ject to differential constraints, nondifferential constraints,
and general boundary conditions. The algorithm is composed
of a sequence of cycles, each cycle consisting of two phases,

a conjugate gradient phase and a restoration phase. The

while the constraints are satisfied to the predetermined

| objective of each cycle is to decrease the functional I,
accuracy (18-1).

!

{

The decision parameters controlling the algorithm are
the constraint error P and the optimality condition error Q
? [see Eqs. (15) and (16)). If P violates Ineq. (18-1), the ‘

algorithm executes a restoration phase. If P satisfies

Ineq. (18-1) and Q violates Ineq. (18-2), the algorithm executes a
conjugate gradient phase. Finally, if P and Q satisfy Inegs.
(18) , the algorithm stops: convergence has been achieved.

9.1, Restoration Phase. This phase involves one or

more iterations and can be summarized as follows. 'l
(a) Assume nominal functions x(t), u(t), 7™ which satis-
fy condition (4), but violate at least one of conditions .{ 4
(2)=-(3) and (5)-(6). | \
: (b) For the nominal functions, solve the LTP-BVP

(32)-(36) and (38)-(42) using the method of particular

< e e A T AW 528
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solutions. In this way, obtain the functions A(t), B(t),
and the multipliers A(t), p(t), o, u .

(c) Using the functions in (b), compute the restoration
stepsize by a one-dimensional search on the constraint error
P(a). To this effect, perform a bisection process on «a,
starting from a0==1, until Ineqgs. (50) are satisfied.

(d) Once the restoration stepsize is known, compute the
varied functions x(t), u(t), m with Egs. (23).

(e) Verify whether the varied functions in (d) satisfy
Ineq. (18-1). 1If this is the case, the restoration phase is
terminated. Otherwise, return to (a) and continue the pro-
cess until satisfaction of (18-1) occurs.

9.2. Conjugate Gradient Phase. This phase involves a

single iteration and can be summarized as follows.

(a) Assume nominal functions x(t), u(t), = which satisfy
the constraints (2)=-(6) within the preselected accuracy (18-1).

(b) For the nominal functions and for y, =0, solve the
LTP-BVP (51)-(60) using the method of particular solutions.
In this way, obtain the auxiliary functions A, (t), B,(t), C,
and the multipliers A, (t), pp(t), Oy My

(c) Set the directional coefficient y at the level (96)
for the first conjugate gradient phase and at the level (97)
for any subsequent conjugate gradient phase. 1In the latter

case, accept the directional coefficient only if Ineq. (99)




is satisfied; otherwise, reset y at the level (96).

(d) Compute the basic functions A(t), B(t), C and the
multipliers A (t), o(t), 0, u using Egs. (101)-(102).

(e) Using the functions in (d), compute the conjugate
gradient stepsize by a one-dimensional search on the augmented

‘ functional J(a)until satisfaction of Ineq. (106) occurs. Then,

bisect the resulting stepsize ag (if necessary), until satis-
faction of Inegs. (105) occurs.

(f) Once the conjugate gradient stepsize is known, j
compute the varied functions X(t), u(t), ™ with Eqgs. (103).

9.3. Conjugate Gradient-Restoration Cycle. After the

restoration phase is completed, verify whether Ineq. (107) is
satisfied. If this is the case, start the next cycle of the
sequential conjugate gradient-restoration algorithm. If not,
return to the previous conjugate gradient phase and reduce
the conjugate gradient stepsize (using a bisection process)

until, after restoration, Ineq. (107) is satisfied.




10. Experimental Conditions

In order to evaluate the theory, twelve examples were

solved. The sequential conjugate gradient-restoration

. e

algorithm was programmed in FORTRAN IV, and the numerical

results were obtained in double-precision arithmetic.

[ i |

Computations were performed at Rice University using an

IBM 370/155 computer. For each example, the interval of in-

 zoa |

tegration was divided into 100 steps. The differential equa-
z tions were integrated using Hamming's modified predictor-
corrector method with a special Runge-Kutta starting procedure
L (Ref. 10). The definite‘integrals I, J, P, Q were computed
1i using a modified Simpson's rule. The method of particular

solutions (Refs. 6-8) was used to solve the linear, two-point

boundary-value problems associated with both the conjugate

o
o

gradient phase and the restoration phase.

10.1. Convergence Conditions. The parameters €1r €9

€4 appearing in Inegs. (18) and (106) were set at the 1evels14

e, =E- 08, e, =E- 04, €, =E-03. (108)

The tolerance level (108-1) characterizes the restoration

phase; the tolerance levels (108-1) and (108-2), employed in

141me symbol E + ab stands for 10%2P,

Y e e PN Y N

o |




combination, characterize the algorithm as a whele; and the

tolerance level (108-3) characterizes the one-dimensional
search for the conjugate gradient stepsize.

10.2. Safeguards. For the conjugate gradient phase,
the parameter P, appearing in Ineq. (105-2) was set at the

level
P, =10. (109)

The tolerance level (109) limits the constraint violation
which is permissible during the conjugate gradient phase.

Also for the conjugate gradient phase, the number of Hermitian
search steps required to satisfy Ineq. (106) was subject to

the upper bound

N < 10. (110)

10.3. Nonconvergence Conditions. The sequential conju-

gate gradient-restoration algorithm was programmed to stop

whenever satisfaction of any of the following inequalities

occurred: {
(1) N> 50, (111) E
(ii) Nc> 30, (112)
(iii) Nr> 10, (113)

—

| 4
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(iv) N v 10, (114)
(v) J,(0) >0, Y=0, (115)
(vi) Npg > 10 y=0, (116)
(vii) N > 10, Y=0. (117)

Here, N is the total number of iterations, NC is the number of
cycles, Nr is the number of restorative iterations per cycle,

N is the number of bisections of the restoration stepsize

br
required to satisfy lneqs. (50), qu is the number of bisecc-
tions of the conjugate gradient stepsize required to satisfy

Inegs. (105), N is the number of bisections of the conjugate

bc
gradient stepsize required to satisfy Ineq. (107), and 5“(0)
is the slope of the augmented functional at a=0.

Inequalities (111)-(112) apply to the algorithm as a
whole. Satisfaction of (111) and/or (112) is indicative of
extreme slowness of convergence,

Inequalities (113)-(114) apply to the restoration phase.
Satisfaction of (113) is indicative of failure to produce a
feasible solution in a reasonable number of restorative itera-
tions. Satisfaction of (114) is indicative of extreme small-

ness of the restorative displacements,

Inequalities (115)-(116) apply to the conjugate gradient
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phase. Satisfaction of (115) means that the descent property
of the conjugate gradient phase does not hold, owing to
numerical inaccuracy. Satisfaction of (116) is indicative of
extreme smallness of the conjugate gradient displacements.

Inequality (117) apvlies to a complete conjugate
gradient-restoration cycle. Satisfaction of (117) is indica-
tive of extreme smallness of the displacements produced within
a complete conjugate gradient-restoration cycle.

10.4. Restarting Conditions. The directional coeffi-

cient y of the present conjugate gradient phase was reset at
the level y =0 whenever sautisfaction of any of the following

inequalities occurred:

(i) J 0) >0, vy=q/8, (118)
(ii) N > 10, vy=0/4Q, (119)
(iii) Ny > 10, Yy =Q/Q. (120)

Satisfaction of (118) means that the descent property of
the conjugate gradient phase does not hold. Satisfaction of
{119) is indicative of extreme smallness of the conjugate
gradient displacements. And satisfaction of (120) is indica-
tive of extreme smallness of the displacements produced within

a complete conjugate gradient-restoration cycle.

|
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The directional coefficient y of the next conjugate

tion of any of the following inequalities occurred:

(iv) S 1 Yy=0 or y=Q/Q, (121) 1

(v) 1eN. <}0, y=0 or y=0/8, (122)

i~ gradient phase was reset at the level y =0 whenever satisfac-
Satisfaction of (121) or (122) is indicative of large viola-

I- tions of the orthogonality and conjugacy conditions, owing to

the fact that the optimal conjugate gradient stepsize cannot 1

be employed.

[
v ]

= e e

N N N
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11. Numerical Examples

In this section, twelve numerical examples are des-

cribed employing scalar notation. In particular, the symbols
xi(tL i=1,...,n, denote the components of the state; the
symbols ui(tL i=1l,..,m, denote the components of the control;
and the symbols ni,i=1,..,p, denote the components of the
parameter.

For all of the examples, a time normalization is used in
order to simplify the numerical computations. Specifically,

the actual time 0 is replaced by the normalized time

t=6/t1, (123)

which is defined in such a way that t=0 at the initial point

and t=1 at the final point. The actual final time 1, if it
is free, is regarded as a component of the vector parameter
to be optimized.
variable final time is converted into an optimal control prob-
lem with fixed final time.

Example 11.1. This is a problem with (i) free initial

state and (ii) fixed final time 1 =1:

1
2 2 2 2
I= ‘O(xl+-x2+-u1+-u2)dt, (124)
x1=x2 ’ \<2=u1- xz, (125)

ik b

In this way, an optimal control problem with
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up~u,+5t-3=0, (126)
L
x1(1)=0 5 (127)
.
L The assumed nominal functions are:
{; xl(t) =0, x2(t) =-1, ul(t)= 0, u2(t)= 0. (128)
l The numerical results are given in Tables 1-2. Convergence

to the desired stopping condition occurs in N=3 iterations,
‘e which include 1 restorative iteration and 2 conjugate gradient
iterations.

Example 11.2. This is a problem with (i) a linear rela-

tion between the components of the initial state and (ii)

L
. fixed final time t=1:
|
iy g R 2
- I=‘ (xl+x2+u1/200+u2)dt, (129)
, 0
i
i: X) =Xy x2=ul+u2—x2, (130)
. u +2u, - 10/(1+ 10t)* = 0, (131)
L- X, (0) +x,(0) = -1, (132)
;
»
i [ Xy (1) +x,(1) =1. (133)
E [ The assumed nominal functions are:
£l
|3
{
;
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xl(t)=0, xz(t)=2t-l, ul(t) =0, u2(t)=0. (134)

The numerical results are given in Tables 3-4. Convergence
to the desired stopping condition occurs in N= 3 iterations,

which include 1 restorative iteration and 2 conjugate gradient

3 iterations.

Example 11.3. This is a problem with (i) initial state

given and (ii) fixed final time t=1:

1
o 2 2 -
F= ‘o(xli-ul)dt A (135) }
xl=X —ul, x2=u2, (136)
®2ewu, = 2% u,=0 (137)
3 1 22 .
xl(0)= 15 x2(0)= v(0.1), (138)
xl(l) = 1 (139)

This problem is equivalent (Ref. 2) tothat of minimizing (135),
subject to (136-1), (138-1), (139), and the following state

inequality constraint:
x,= 0,930, (140)
The assumed nominal functions are:

xl(t)= 1, X, (t) = /(0.1), u, (t) =1, u,(t) =1. (141) )

: * G b 0 c - el . PR YT T W L
i i o Y s e N0 il L s i
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The numerical results are given in Tables 5-6. Convergence
2 to the desired stopping condition occurs in N=14 iterations,
which include 9 restorative iterations and 5 conjugate gra-

i
Le dient iterations.

Example 11.4. This is a problem with (i) initial state

partially given and (ii) fixed final time T1=1:

1

{
¥ I=s

.-y
K

3 2 2

S o[szul/(l+ul)]dt+x2(0) . (142) ﬂ
l- . 3 2 . = :J
- X =Xy, Xy =4y, (143) 1
L
u, -ul=0 (144) !
g 1052 < g
l.‘ {|
2 x,(0) =0, (145) ||

: X, (1) = 1/3 . (146) 5

i

|

This problem is equivalent (Ref. 2) to that of minimizing

| ]

(142), subject to (143), (145), (146), and the following con-

trol inequality constraint:

=

>0 . (147)

| o
=
[
I

The assumed nominal functions are:15

15

Here, C=vY(1/7). For this value of C, the constraints
(143)-(146) are satisfied.

TR AEY S euE ap



x, (£)= (c2/3)(e3 + 362 + 3¢), x, () =C(t+1), (148)

ul(t) =C, uz(t) = O, (149)

E The numerical results are given in Tables 7-8. Convergence

to the desired stopping condition occurs in N=7 iterations,
which include 4 restorative iterations and 3 conjugate gra-
dient iterations.

Example 11.5. This is a minimum time problem with (i) a

linear relation between the components of the initial state

and (ii) free final time 1. After setting m, =1, the problem

1

is as follows:

I= "1' (150)
i . -
: Xy =Tuy, %y = Wy (ug - %) = 1/2), (151)
i
'; uf-xf—u%:O, (152)
x; (0)=x,(0)=0, (153)
x, (1) =1, Xy (L)==u/4 . (154)

This problem is equivalent (Ref. 2) to that of minimizing

(150), subject to (151), (153), (154), and the following

state-derivative inequality constraint:
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x2/1vl+1/2:0. (155)

SUNBI SRR

The assumed nominal functions are:

X, (t) =t, X, (t) =-(n/4)¢t, (156)

ul(t)= b u2(t)= 1, = 1. (157)

1

The numerical results are given in Tables 9-10. Convergence

!

to the desired stopping condition occurs in N=18 iterations,

.

which include 13 restorative iterations and 5 conjugate gra-

dient iterations.

— e
.

Example 11.6. This is a problem with (i) a component of

P o
. '

the initial state given, (ii) a nonlinear relation concerning

the remaining component of the initial state, and (iii) fixed

]
-

final time t=1:

[ e—
L] '

Sy 3 2 9
1-‘0 l2x2u1/(l+ul)]dt+x2(0). (158)
{ ¢ 2 ¢
[ x1=x2 ; x2=ul ’ (159)
U, ~us=0 (160)
[ 1 2 !
%, (0) = 0 [~< (0)- 0 35] [l—x (0)]-1\2:0 (161)
1 ' Xy . 2 1=0
%, (1) = 1/2 (162)

Lo B B

[ |
?
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This problem is equivalent (Ref. 2) to that of minimizing L
(158), subject to (159), (161-1), (162), and the following

inequality constraints imposed on the control and the initial

u; 20, (163)

0.35 < x,(0) < 1. (164)

The assumed nominal functions are:16

&N 58114, x, (£)=C(t+1), (165) I

]
|
§
:
I
|
|

x, (t) = (3 + 3t
u, (8) =¢, uy(t)=vC,  m=/[(C-0.35)(1-C)]. (166} ( |

The numerical results are given in Tables 11-12. Convergence }
to the desired stopping condition occurs in N=10 iterations, 7
which include 7 restorative iterations and 3 conjugate gra- -’
dient iterations. ]

Example 11.7. This is a problem with (i) a nonlinear

relation between the components of the initial state and (ii) J

fixed final time T=1:

16

Here, C=/(1/7). }
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1 2 2
1=‘ (x +ud)at, (167)
0
WA e
X = 1- Yy Xy = Uy, (168)
2
X3 - u; ~1+2t-2x,u,=0, (169)
2 by
x; (0) - x5(0) = 0.8, (170)
x, (1) =1. (171)

This problem is equivalent (Ref. 2) to that of minimizing
(167), subject to (168—1f, (171) , and the following state

inequality constraint:

x,-0.8-t+t?20. (172)

The assumed nominal functions are:
X, (t) =1, x(t) = V/(0.2), u, (t) =1, u,(t) =0. (173)

The numerical results are given in Tables 13-14. Convergence
to the desired stopping condition occurs in N= 22 iterations,
which include 13 restorative iterations and 9 conjugate gra-

dient iterations.

Example 11.8. This is a problem with (i) a component of

the initial state given, (ii) a linear relation between the

remaining components of the initial state, and (iii) fixed




final time t=1/2:

& o 9
I= ‘ r(ul T X] + 1t)dt, (174)
0
X, = Tu X, = T(2-4x2) %, =Tx X, =Tu (175)
1 i B 2 i el 3 4’ 4 2"
4%, u, - X U, - X2 =0 (176)
171 372 4 f
xl(O) =0, 2x3(0) +x4(0) =1, (177)
xl(l) =1, xz(l) =0. (178)

The assumed nominal functions are:

xl(t) =t, x2(t) =4t(1-1t), x3(t) =1-2¢t, (179)
x4(t) =-1, ul(t) =1/t, uz(t) =0. (180)

The numerical results are given in Tables 15-16. Convergence
to the desired stopping condition occurs in N= 23 iterations,
which include 13 restorative iterations and 10 conjugate gra-
dient iterations.

Example 11.9. This is a problem with (i) a component of

the initial state given, (ii) a nonlinear relation between

the remaining components of the initial state, and (iii) fixed

final time t=17/2:
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I=‘ T(ul-x1+rt)dt, (181)
0
X, = Tu X =T(2-4X2) X, = TX X, =Tu (182)
1™ T, 2 1) 3™ ARy 4 2
4x,u —xu-x2=0 (183)
gy = Egla =R =0,
x,(0) =0, x5(0)+x3(0) [x3(0) + 2x, (0] =-1,  «Qsa)
xy (1) = 1, x,(1) = 0. (185)

The assumed nominal functions are:
xl(t)=t, x2(t)=4t(l-t), x3(t)=l-2t, x4(t)=-l, (186)
ul(t)=1/1, uz(t)=0 . (187)

The numerical results are given in Tables 17-18. Convergence
to the desired stopping condition occurs in N= 20 iterations,
which include 12 restorative iterations and 8 conjugate gra-

dient iterations.

Example 11.10. This is a problem with (i) a component

of the initial state given, (ii) two nonlinear relations between
the remaining components of the initial state, and (iii)

fixed final time 1=1/2:
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I= ‘ r(ul-x +rvE)dt, (188)
0 4 ',
X, = Tu X =1(2-4x2) X. = TX X, = TU (189) ‘
1 1’ 2 1) 3 4" 4 27
BN = X = B (190)
3By T X, = K= 0,
b 2 P i
x,(0)=0, x,(0) +x3(0) =1, x5(0)x,(0) = -1, (191)
x; (1) =1, x4 (1) = 0. (192)

This problem is equivalent (Ref. 2) to that of minimizing
(188), subject to (189-1), (189-2), (191-1), (192), and the

following state inequality constraint:
1-x2:0. (193)

The assumed nominal functions are:

xl(t)=t, xz(t)=4t(l-th x3(t%=l-2t, x4(t)=—l, (194) ‘
u(t)=1/t, uz(t)=0. (195)

The numerical results are given in Tables 19-20. Convergence

to the desired stopping condition occurs in N=18 iterations, -I '
which include 11 restorative iterations and 7 conjugate gra-

dient iterations.

Example 11.11, This is a minimum time problem with (i) J

RS S T
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a nonlinear relation between the components of the initial
state and (ii) free final time t. After setting =T the

problem is as follows:

I=m,, (196)
%, =m.u %. =%, (02 -x2-1/2) (197)
s e e g Ty Wy =Ry '
2. .2 a3
ul—xl—uz—o, (198)
%, (0) +x2(0) = 0 (199)
1 2 '
x; (1)x,(1)=-n/4. (200)

This problem is equivalent (Ref. 2) to that of minimizing
(196), subject to (197), (199), (200), and the following

state-derivative inequality constraint:

x2/nl+1/220 2 (201)
The assumed nominal functions are:
xl(t)=t, x2(t)=-(v/4)t, ul(t)=l, u2(t)=l, n1=1. (202)

The numerical results are given in Tables 21-22. Convergence
to the desired stopping condition occurs in N=14 iterations,
which include 10 restorative iterations and 4 conjugate gra-

dient iterations.
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Example 11.12. This is a problem with (i) a linear

relation between the first two components of the initial

state, (ii) a nonlinear relation between the remaining compo-
nents of the initial state, and (ii) fixed final time T=1:
-
1=‘ ulat, (203)
0
Xy =Xy Xy =y, Xy = Xy Xy = Uy, (204)
u, + 2x.,u +2x2=0 (205)
1 3°2 4 4
. 2 e
xl(0)4-x2(0)—-1, x3(0)+-2x3(0)x4(0)— 0.85, (206)
xl(l)=0, x2(1)=—l. (207)

The assumed nominal functions are:
xl(t)==0, xz(t)= 1-2¢t, x3(t)=(1-2t)/(0.15), (208)
x4(t)=(2t-1)/2/(0.15), ul(t)=1, u2(t)=0. (209)

The numerical results are given in Tables 23-24. Convergence
to the desired stopping condition occurs in N= 20 iterations, ]
which include 12 restorative iterations and 8 conjugate gra-

dient iterations.

R e T L A S SRR g
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Table 1. Convergence history, Example 11.1,
Ng Nr N P Q I
0 0 0 0 0.43E+01
1 0 1 1 0.15E-29 0.17E+00 1.29984
2 1 0 2 0.90E-30 0.49E-02 1.18165
3 1 0 3 0.12E-29 0.31E-06 1.18040
Table 2. Converged solution, Example 11.1.
Xy Xy uy u,
0.0 -0.0069 -0.3314 1.5004 -1.4995
0.1 -0.0316 -0.1699 1.2368 -1.2631
0.2 -0.0422 -0.0485 0.9798 -1.0201
0.3 -0.0425 0.0370 0.7279 -0.7720
0.4 -0.0359 0.0908 0.4799 -0.5200
0.5 -0.0253 0.1159 0.2343 -0.2656
0.6 -0.0135 0.1153 -0.0100 -0.0100
0.7 -0.0030 0.0916 -0.2544 0.2455
0.8 0.0040 0.04638 -0.5000 0.4999
0.9 0.0056 -0.0171 -0.7481 0.7518
1.0 0.0000 ~-0.0988 -1.0000 1.0000
T=1.00000

1 P

o ry
.
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Table 3. Convergence history, Example 11.2.

T N Y P Q I
0 0 0 0 0.79E+01

1 0 1 1 0.37E-27 0.35E+00 1.89493
2 1 0 2 Y=0 0.15E-26 0.65E-02 1.48434
3 1 0 3 Y#0 0.24E-26 0.50E-04 1.48042

Table 4. Converged solution, Example 11.2.

t x1 x2 u1 u2

0.0 0.1127 -1.1127 12.0825 -1.0412

0.1 0.0416 -0.4340 4,6589 -1.0794

0.2 0.0146 -0.1335 3.2253 -1.0571

0.3 0.0114 0,0578 2.7069 -1.0409

0.4 0.0245 0.1984 2.4732 -1.0366 &
0.5 0.0501 0.3101 2.3668 -1.0445 I
0.6 0.0859 0.4035 2.3329 -1.0644 -
0.7 0.1304 0.4847 2.3482 -1.0959

0.8 0.1826 0.5581 2.4013 -1.1389 1
0.9 0.2419 0.6265 2.4864 -1.1932 i
1.0 0.3078 0.6921 2.5999 -1.2586

T=1.00000
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Table 5. Convergence history, Example 11.3.
Nr N Y P Q I
0 0 0 0 0.14E+01
1 0 3 3 0.52E-09 0.35E+00 1.83569
2 1 2 6 Y=0 0.15E-16 0.14E-01 1.66599
3 1 il 8 Y#0 0.12E-08 0.27E-03 1.65745
4 1 1 10 Y#0 0.12E-12 0.18E-03 1.65704
5 1 1 12 Y#0 0.51E-13 0.16E-03 1.65677
6 1 1 14 Y#0 0.34E-12 0.66E-04 1.65641
Table 6. Converged solution, Example 11.3.
=53 =3 b U2
0.0 1.0000 0.3162 1.7514 -1.1881
0.1 0.9417 0.2043 1,3437 -1.1180
0.2 0.9082 0,0907 1.0166 -1.0558
0.3 0.9002 0.0151 0.8232 -0.4215
0.4 0.9000 -0.0027 0.8099 -0.0180
0.5 0.9000 -0.0013 0.8100 0.0096
0.6 0.9000 -0.0010 0.8100 0.0303
0.7 0.9003 0.0175 0.7956 0.4250
0.8 0.9087 0.0933 0.6292 1.0524
0.9 0.9420 0.2051 0.4398 1.0912
1.0 1.0000 0.3162 0.2376 1.2053
T=1.00000

N e B B
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Table 7. Convergence history, Example 11.4.

c g ba J
AR SO e 0.47E-32  0.49E-01  0.19642 ]
1 1 2 3 y=0 0.10E-13 0.11E-02 0.16924
. ! 1 5 Y#0 0.12E-09 0.10E-03 0.16816
3 1 1 7 Y#0 0.31E-13 0.11E-04 0.16809

Table 8. Converged solution, Example 11.4.

t Xy X, uy u, A
i

0.0 0.0000 0.2908 0.9570 0.9782

0.1 0.0112 0.3753 0.7474 0.8645

0.2 0.0281 0.4428 0.6127 0.7827

0.3 0.0504 0.4995 0.5266 0.7257
0.4 0.0779 0.5488 0.4603 0.6784 ]
0.5 0.1105 0.5917 0.3978 0.6307 J

0.6 0.1478 0.6284 0.3372 0.5807
0.7 0.1894 0.6593 0.2817 0.5308 .
0.8 0.2346 0.6848 0.2269 0.4764 }
0.9 0.2829 0.7039 0.1491 0.3862 -

1.0 0.3333 0.7138 0.0516 0.2272

1=1.00000
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L Table 9. Convergence history, Example 11.5. :
L Nc Ng Nr N Y P Q I
- 1
Ry NS Y 0.11E+01 4
aL= 1 0 5 5 0.13E-14 0.21E-01 1.83056 1
i 2 1 2 8 Y=0 0.52E-14 0.37E~-02 1.82421
x 3 1 2 11 Y#0 0.18E-15 0.20E-02 1.82301 j
4 1 2 14 Y#0 0.72E-15 0.11E-02 1.82249 E
r 5 1 1 16 Y#0 0.11E-08 0.27E-03 1.82230 i
: 6 1 1 18 Y#0 0.81E-11 0.71E-04 1.82226 ’

e |

[y
|

[
B N

Table 10. Converged solution, Example 11.5.

-

: { t Xl X2 ul 1.12
: 0.0 0.0034 0.0034 0.4978 0.4978
: [ 0.1 0.0936 -0.0436 0.4887 0.4797
2 0.2 0.1805 -0.0967 0.4631 0.4264
1 0.3 0.2614 -0.1609 0.4225 0.3319 \
1 [ 0.4 0.3338 -0.2396 0.3703 0.1601 |
' 0.5 0.4020 -0.3298 0.4025 -0.0193 :
: 0.6 0.4824 -0.4209 0.4824 0.0013
: 0.7 0.5788 -0.5120 0.5788 -0.0015
; [ 0.8 0.6945 -0.6031 0.6945 0.0027
0.9 0.8334 -0.6942 0.8334 -0.0029 |
[ 1.0 1.0000 -0.7853 1.0000 -0.0016
||
| l t=m, =1.82226

B
-
»
e -




Table 11.

Convergence history,

Example 11.6.

N P Q
0 0 0 0 0.31E-01
1 0 3 3 0.28E-09 0.65E-01
2 1 2 6 0.14E-15 0.17E-02
3 1 1 8 0.44E-10 0.27E-03
4 1 1 10 0.52E-12 0.19E-04
Table 12. Converged solution, Example 11.6.
*1 by
0.0 0.0000 0.4133 0.9597
0.1 0.0210 0.4990 0.7660
0.2 0.0496 0.5686 0.6354
0.3 0.0855 0.6275 0.5471
0.4 0.1283 0.6787 0.4789
0.5 0.1775 0.7235 0.4174
0.6 0.2328 0.7623 0.3576
0.7 0.2935 0.7950 0.2974
0.8 0.3590 0.8216 0.2315
0.9 0.4:482 0.8409 0.1525
1.0 0.5000 0.8518 0.0677

1=1.00000 i m, =0.19278

1




69

AAR-145

S

Ny P

Table 13. Convergence history, Example 11.7.
Nr N P Q I
0 0 0 0 0.33E+00
1l 0 3 3 0.52E-14 0.40E+01 2.57561
2 1 2 6 0.32E-11 0.11E-01 1.82401
3 1l 1 8 0.25E-09 0.20E~-01 1.81492
4 1l 1 10 0.18E-09 0.18E-02 1.80922
5 1 1 12 0.11E-11 0.22E-02 1.80803
6 1 i 14 0.31E-12 0.40E-03 1.80736
v 1 1 16 0.37E-13 0.74E-03 1.80704
8 1 1 18 0.35E-13 0.15E-03 1.80678
9 1 1 20 0.15E-14 0.32E-03 1.80667
1 1 1 22 0.14E-13 0.98E-04 1.80650
Table 14. Converged solution, Example 11.7.
s S 1 “a
0.0 0.8139 0.1180 0.0102 -1.4724
0.1 0.8901 0.0124 0.0056 -0.5342
0.2 0.9600 -0.0063 0.3219 0.0235
0.3 1.01900 0.0000 0.6201 0.0633
0.4 1.0400 0.0033 0.8816 0.0012
0.5 1.0500 -0.0001 1.1024 -0.0725
0.6 1.0400 -0.0085 1.2808 ~0.0525
0.7 1.0101 0.0108 1.4068 0.6212
0.8 0.9779 0.1340 1.1179 1.6351
0.9 0.9747 0.2910 0.8558 1.5361
1.0 1.0000 0.4472 0.6327 1.5286
T=1.00000

o SRR SICK W PP
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Table 15. Convergence history, Example 11.8.
Ng Nr N P Q I

0 0 0 0 0.23E+01
1 0 3 3 0.49E-09 0.52E-01 1.27196
2 1 1 5 0.86E-09 0.27E-01 1.25174
3 1 1 7 0.83E-09 0.10E-01 1.24337
4 X 1 9 0.54E-10 0.45E-02 1.23945
5 1 1 11 0.85E-11 0.32E-02 1.23734
6 1 1 13 Y#0 0.40E-11 0.22E-02 1.23589
7 1 1 15 Y#0 0.13E-11 0.13E-02 1.23492
8 1 1 17 Y#0 0.22E-12 0.79E-03 1.23435
9 1 1 19 Y#0 0.31E-13 0.43E-03 1.23403
10 1 1 21 Y#0 0.33E-14 0.21E-03 1.23385
11 1 1 23 Y#0 0.24E-15 0.96E-04 1.23377

Table 16. Converged solution, Example 11.8.

X X, X3 X,y uy u,
0.0 0.0000 -0.0122 0.9981 -0.9963 0.9955 -0.9944
0.1 0.1557 0.2968 0.8300 -1.1396 0.9715 -0.8354
0.2 0.3076 0.5758 0.6416 -1.2548 0.9557 -0.6208
0.3 0.4516 0.7978 0.4376 -1.3403 0.8747 -0.4941
0.4 0.5850 0.9417 0.2221 -1.3953 0.8130 -0.2003
0.5 0.7044 0.9927 0.0014 -1.4094 0.7050 0.0059
0.6 0.8062 0.9464 -0.2191 -1.3944 0.5899 0.1908
0.7 0.8890 0.8070 -0.4350 -1.3478 0.4611 0.4060
0.8 0.9502 0.5873 -0.6407 -1.2664 0.3157 0.6301
0.9 0.9876 0.3090 -0.8310 -1.1507 0.1589 0.8379
1.0 1.0000 0.0000 -1.0007 -1.0047 -0.0015 1.0148

t=n1/2=1,57079
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Table 17. Convergence history, Example 11.9.
Nr N Y P Q I

0 0 0 0 0.23E+01

1 0 4 4 0.16E-13 0.22E-01 1.24364
2 1 1 6 y=0 0.24E-10 0.55E-02 1.23682
3 1 1 8 Y#0 0.20E-11 0.13E-02 1.23518
4 1 1 10 Y#0 0.28E-13 0.54E-03 1.23465
5 1 1 12 Y#0 0.20E-14 0.37E-03 1.23438
6 1 1 14 Y#0 0.55E-15 0.28E-03 1.23419
7 1 1 16 Y#0 0.61E-15 0.20E-03 1.23403
8 1 1 18 Y#0 0.93E-15 0.12E-03 1.23394
9 1 1l 20 Y#0 0.44E-15 0.72E-04 1.23388

Table 18. Converged solution, Example 11.9.
X, X3 X uy u,

0.0 0.0000 0.0422 1.0522 -1.0213 1.0068 -0.9914
0.1 0.1578 0.3511 0.8802 -1.1643 1.0051 -0.8188
0.2 0.3122 0.6292 0.6879 -1.2786 0.9674 -0.6198
0.3 0.4579 0.8486 0.4800 -1.3652 0.9013 -0.4433
0.4 0.5940 0.9872 0.2613 -1.4117 0.8199 -0.1709
0.5 0.7142 1.C306 0.0382 -1.4239 0.7099 0.0156
0.6 0.8166 0.9746 -0.1843 -1.4045 0.5904 0.2399
0.7 0.8985 0.8243 -0.4010 -1.3469 0.4496 0.4938
0.8 0.9570 0.5949 -0.6054 -1.2504 0.2931 0.7286
0.9 0.9906 0.3106 -0.7921 -1.1208 0.1347 0.9115
1.0 1.0000 0.0000 -0.9563 -0.9674 -0.0124 1.0307

T=nw/2=1.57079

oeee B L BN BN
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Table 19. Convergence history, Example 11.10.
Ng N_ N Y P Q I

0 0 0 0 0.23E+01
1 0 4 4 0.21E-15 0.24E-01 1.24401
2 1 i 6 Y=V 0.29E-10 0.60E-02 1.23670
3 1 1 8 Y#0 0.25E-11 0.15E-02 1.23495
4 1 1 10 Y#0 0.35E-13 0.60E-03 1.23438
5 1 1 12 Y#0 0.26E-14 0.40E-03 1.23408
6 1 1 14 Y#0 0.54E-15 0.24E-03 1.23389
7 1 1 16 Y#0 0.55E-16 0.12E-03 1.23378
8 1 1 18 Y#0 0.26E-17 0.48E-04 1.23374

Table 20. Converged solution, Example 11.10.

= 2 *3 *4 =l s
0.0 0.0000 -0.0008 1.0004 -0.9995 1.0016 ~0.9987
0.1 0.1563 0.3081 0.8317 =-1.1434 0.9848 ~0.8312
0.2 0.3087 0.5870 0.6426 -1.2594 0.9432 ~0.6553
0.3 0.4534 0.8085 0.4374 -1.3456 0.9002 ~0.4064
0.4 0.5878 0.9506 0.2221 -1.3909 0.8044 -0.1941
0.5 0.7061 0.9999 0.0018 -1.4090 0.7028 -0.0310
0.6 0.8081 0.9520 -0.2189 -1.3979 0.5922 0.1808
0.7 0.8910 0.8104 -0.4353 -1.3506 0.4601 0.4227
0.8 0.9517 0.5887 -0.6413 ~-1.2655 0.3100 0.6568
0.9 0.9880 0.3092 -0.8311 -1.1462 0.1527 0.8544
1.0 1.0000 0.0000 -1.0000 -0.9999 0.0007 0.9970

T=n/2=1.57079
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Table 21 . Convergence history, Example 11l.11l.
N Y P Q I
0 0 0 0 0.11E+01

1 0 4 4 0.28E~13 0.10E+00 1.61985
2 1l 2 7 y=0 0.39E-12 0.14E-01 1.58737
3 1 2 10 Y#0 0.99E-16 0.14E-02 1.58313
4 1 1 12 Y#0 0.19E-08 0.26E-03 1.58236
5 1 1 14 Y#0 0.10E-09 0.64E~-04 1.58221

Table 22. Converged solution, Example 11.11.

Xy x2 uy u,

0.0 -0.0928 ~0.3047 0.8187 0.8134

0.1 0.0372 ~0.2771 0.8228 0.8219

0.2 0.1664 ~0.2526 0,8066 0.7893

0.3 0.2914 ~0.2414 0,7704 0.7131

0.4 0.4092 ~0.2526 0.7144 0.5856

0.5 0.5165 -0.2930 0.6402 0.3781

0.6 0.6141 -0.3627 0.6184 0.0732

0.7 0.7194 -0.4417 0.7195 -0.0104

0.8 0.8428 -0.5208 0.8428 0.0051

0.9 0.9872 -0.5999 0.9873 ~0.0034

1.0 1.1565 -0.6790 1.1565 ~0.0087

TR 1.58221
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Table 23. Convergence history, Example 11.12.
Ng Nr N P Q I
0 0 0 0 0.22E+02
1 0 4 4 0.17E-08 0.46E+00 3.32348
2 1 2 7 Y=0 0.67E-13 0.55E-01 3.05708
3 1 2 10 Y#0 0.96E-16 0.15E-01 3.01500
4 1 1 12 Y=0 0.11E-16 0.25E-02 3.00374
5 1 1 14 Y=0 0.20E-17 0.13E-02 3.00161
6 1 1 16 v=0 0.17E-16 0.51E-03 3.00073
7 1 1 18 Y=0 0.81E-19 0.27E-03 3.00034
8 1 0 19 y=0 0.61E-08 0.11E-03 3.00016
9 1 0 20 Y=0 0.63E-08 0.60E-04 3.00007
Table 24. Converged solution, Example 11.12.
*1 2 *3 X4 “i 2
0.0 0.5018 0.4981 0.5645 -1.0351 -3.0237 0.7798
0.1 0.5370 0.2121 0.4651 -0.9487 -2,7051 0.9725
0.2 0.5452 -0.0432 0.3756 -0.8348 -2,4024 1.3420
0.3 0.5294 -0.2684 0.2998 -0.6704 -2.1021 2.0061
0.4 0.4925 -0.4637 0.2443 -0.4231 -1.8023 2.9551
0.5 0.4377 -0.6282 0.2179 -0.0969 -1.4856 3.3646
0.6 0.3679 -0.7613 0.2240 0.2027 -1.1815 2.4533
0.7 0.2864 -0.8650 0.2543 0.3824 ~-0.8926 1.1796
0.8 0.1959 -0.9396 0.2968 0.4533 -0.5988 0.3164
0.9 0.0994 -0.9847 0.3428 0.4582 -0.3017 -0.1722
1.0 0.0000 -1.0000 0.3872 0.4253 -0.0033 -0.4628
T=1.00000
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12. Discussion

The examples presented in Section 11 were solved with
both the sequential conjugate gradient-restoration algorithm
(SCGRA) of this report and the sequential ordinary gradient-
restoration algorithm (SOGRA) of Ref. 5. This was done in
order to gain perspective on the relative merit of SCGRA
vis-a-vis SOGRA.

The comparative resultsl7 are presented in Tables 25-27,
where the number of iterations N required to achieve different
tolerance levels for the error in the optimality conditions Q
is given for a fixed tolerance level of the constraint error
P < E-08. Also shown in the tables are the values obtained
for the objective functional I.

Cumulative results for the twelve examples investigated
are given in Table 28. Illere, the total number of iterations
for convergence XN is presented as a furniction of the tolerance
level chosen for the error in the optimality conditions Q, for
a fixed tolerance level in the constraint error P < E-08. In
this comparative study, tolerance levels in the range Q < E-02

to Q < E-04 were chosen for the error in the optimality conditions.

17

In Tables 25-27, the symbol LQ stands for a linear-quadratic
problem, and the symbol NLQ stands for a nonlinear and/or
nonquadratic problem.
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From Tables 25-28, it appears that there is no saving
in number of iterations for Q< E-02. The saving is 4%
for Q< E-03 and 11% for Q < E~04. Clearly, the relative
advantage of SCGRA with respect to SOGRA increases by imposing
a tighter tolerance level on the error in the optimality con-
ditions.

It must be noted that the experiments performed show
that the computer time per iteration is roughly the same for
SCGRA and SOGRA. Therefore, the conclusions pertaining to

savings in number of iterations also apply to savings in com-

puter time.
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Table 25. Results for P < E-08 and Q< E-02.

SCGRA SOGRA
Example Type

‘ N I N I
i 11.1 LQ 2 1.18165 2 1.18165
11.2 LQ 2 1.48434 2 1.48434
T 11.3 NLQ 8 1.65745 8 1.65742
i 11.4 NLQ 3 0.16924 3 0.16924
11.5 NLQ 8 1.82421 8 1.82421
= 11.6 NLQ 6 0.28910 6 0.28910
i 1.2 NLQ 10 1.80922 10 1.81240
a 11.8 NLQ 9 1.23945 7 1.24498
11.9 NLQ 6 1.23682 6 1.23682
11.10 NLQ 6 1.23670 6 1.23670
i 11.11 NLQ 10 1,58313 9 1.58381
11.12 NLQ 12 3.00374 11 3.00785

'3 Table 26. Results for P < E-08 and Q< E-03.

SCGRA SOGRA

Example Type

—
Z
—
z
-

| 12.1 LQ 3 1.18040 3 1.18041
- 1.2 LQ 3 1.48042 3 1.48045
11.3 NLQ 8 1.65745 8 1.65742
r 11.4 NLQ 5 0.16816 5 0.16818
- L, 11.5 NLQ 16 1.82230 12 1.82276
11.6 NLQ 8 0.28781 8 0.28774 1
: 11.7 NLQ 14 1.80736 18 1.80797 {
l 11.8 NLQ 17 1.23435 19 1.23613 i\
: 11.9 NLQ 10 1.23465 10 1.23492 f
¢ 11.10 NLQ 10 1.23438 11 1.23439
i I 11.11 NLQ 12 1.58236 13 1.58242
g 33.12 NLQ 16 3.00073 17 3.00075
i
3
¢

Bl
L .
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Table 27. Results for P < E-08 and Q < E-04.

Example Type LG BOCRA _—
N I N I
11.1 LQ 3 1.18040 3 1.18041
11.2 LQ 3 1.48042 3 1.48045
3.3 NLQ 14 1.65641 12 1.65678
11.4 NLQ 7 0.16809 7 0.16810
21.5 NLQ 18 1.82226 20 1.82224
11.6 NLQ 10 0.28762 10 0.28764
EEe? NLQ 22 1.80650 26 1.80654
11.8 NLQ 23 1.23377 35 1.23400
11.9 NLQ 20 1.23388 20 1.23411
11.10 NLQ 18 1.23374 20 1.23384
11,11 NLQ 14 1.58221 16 1.58217
1t.12 NLQ 20 3.00007 21 3.00007

Table 28. Cumulative number of iterations 1
for convergence, P < E~08,

SCGRA SOGRA U1a
IN N |

Q < E-02 82 78 {
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13. Conclusions

In this report, a new member of the family of sequential
gradient-restoration algorithms for the solution of optimal
control problems is presented. This is an algorithm of the
conjugate gradient type and solves the problem represented by
Eqs. (1)-(6): Minimize a functional subject to differential
constraints, nondifferential constraints, and general boundary
conditions.

The algorithm presented here differs from those of Refs.
3-4, in that it is not required that the state vector be given
at the initial point. 1Instead, the initial conditions can be
absolutely general. In analogy with Refs. 3-4, the present
algorithm is capable of handling general final conditions;
therefore, it is suitable for the solution of optimal control
problems with general boundary conditions,

The importance of the present algorithm lies in that many
optimal control problems either arise naturally in the present
format or can be brought to such a format by means of suitable
transformations (see Ref. 2). Therefore, a great variety of
optimal control problems can be handled, as it is shown by the
numerical examples presented.

Twelve numerical examples are presented to illustrate the

performance of the algorithm. The numerical results show the

feasibility as well as the convergence characteristics of the

ned
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algorithm. A comparative analysis of the sequential conjugate
gradient-restoration algorithm and the sequential ordinary
gradient-restoration algorithm shows that the relative advan-
tage of SCGRA with respect to SOGRA increases by imposing a
tighter tolerance level on the error in the optimality condi-
tions.

In summary, the new member of the family of sequential
gradient-restoration algorithms described here has the follow-
ing properties: (i) it retains the robustness, reliability,
and convergence characteristics of the algorithms discussed in
Refs. 3-4; (ii) it is able to handle all of the optimal con-
trol problems treated in Refs. 3-4; and (iii) it has the ad-
ditional capability of handling optimal control problems with

general boundary conditions.

t———

|
|
§
1
|




111

e ] P PO
. ) . |

4

Lo el

81 AAR-145

References

MIELE, A., DAMOULAKIS, J.N., CLOUTIER, J.R., and TIETZE,

J.L., Sequential Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Constraints,

Journal of Optimization Theory and Applications, Vol. 13,

No. 2, 1974.

MIELE, A., Recent Advances in Gradient Algorithms for

Optimal Control Problems, Journal of Optimization Theory

and Applications, Vol. 17, Nos. 5-6, 1975,

MIELE, A., CLOUTIER, J.R., MOHANTY, B.P., and WU, A.K.,

Sequential Conjugate Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Constraints,

Part 1, International Journal of Control (to appear).

MIELE, A., CLOUTIER, J.R., MOHANTY, B.P., and WU, A.K.,

Sequential Conjugate Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Constraints,

Part 2, International Journal of Control (to appear).

GONZALEZ, S., and MIELE, A., Sequential Gradient-

Restoration Algorithm for Optimal Control Problems with

Nondifferential Constraints and General Boundary Conditions,

Rice University, Aero-Astronautics Report No. 143, 1978.




10.

82 AAR-145 '

MIELE, A., Method of Particular Solutions for Linear,

Iwo-Point Boundary-Value Problems, Journal of Optimiza-

tion Theory and Applications, Vol. 2, No. 4, 1968.

MIELE, A., and IYER, R.R., General Technique for Solving 3j

Nonlinear, Two-Point Boundary-Value Problems via the

Method of Particular Solutions, Journal of Optimization

Theory and Applications, Vol. 5, No. 5, 1970.

MIELE, A., and IYER, R.R., Modified Quasilinearization

Method for Solving Nonlinear, Two-Point Boundary-Value

Problems, Journal of Mathematical Analysis and Applica-

tions, Vol. 36, No. 3, 1971.

MIELE, A., BONARDO, F., and GONZALEZ, S., Modifications

and Alternatives to the Cubic Interpolation Process for

One-Dimensional Search, Rice University, Aero-Astronautics

Report No. 135, 1976.

RALSTON, A., Numerical Integration Methods for the

Solution of Ordinary Differential Equations, Mathemati- ‘I

cal Methods for Digital Computers, Vol. 1, Edited by A.

Ralston and H.S. Wilf, John Wiley and Sons, New York, New

York, 1960,




i R A A V57 A G T A A TR S 5L A e G A % i s i ,.._...._;..._s_ﬂ
i

83 AAR-145

Additional Bibliography |

11. KNAPP, C.H., The Maximum Principle and the Method of

Gradients, IEEE Transactions on Automatic Control, 1

Vol. 11, No. 4, 1966.

12. LASTMAN, G.J., A Modified Newton's Method for Solving

Trajectory Optimization Problems, AIAA Journal, Vol. 6,

N No. 5, 1968.

i P i el e M

13. LASTMAN, G.J., and TAPLEY, B.D., Optimization of Non- |

linear Systems with Inequality Constraints Explicitly |

Containing the Control, International Journal of Control,

vol. 12, No. 3, 1970.

14. HONTOIR, Y., and CRUZ, J.B., JR., A Manifold Imbedding

[,
. .

Algorithm for Optimization Problems, Automatica, Vol. 8,

]
. .

No. 5, 1972.

oy
[ '

o ke
= =
N o

N

D ]
. .
&3




